Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101.
نویسندگان
چکیده
Use of starch solution as feed for butanol bioconversion processes employing Clostridium beijerinckii BA101 may have added economic advantage over the use of glucose. Acetone butanol ethanol (ABE) was produced from 30 gL(-1) starch solution using a continuous process. The bioreactor was fed at a dilution rate of 0.02 h(-1) and starch solution/feed volume (3 L) was replaced every 72 h. The continuous reactor fed with cornstarch solution (feed temperature 19 degrees C) produced approximately 6.0 gL(-1) total ABE. Increasing the feed storage temperature to 37 degrees C improved ABE production to 7.2 gL(-1) suggesting that retrogradation was occurring more rapidly at 19 degrees C. In both these cases the fermentation drifted toward acid production after approximately 260 h, consistent with the retrogradation of starch overtime. The use of soluble starch, which is less prone to retrogradation, resulted in the production of 9.9 gL(-1) ABE at 37 degrees C feed storage temperature, as compared to 7.2 gL(-1) ABE when cornstarch was used. It should be noted that gelatinized starch retrogradation takes place after sterilization and prior to use of the feed medium, and does not occur during long-term storage of the raw corn material in the months leading up to processing. The degree of hydrolysis of gelatinized starch decreased from 68.8 to 56.2% in 3 days when stored at 37 degrees C. Soluble starch which does not retrograde demonstrated no change in the degree of hydrolysis.
منابع مشابه
Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation.
During pretreatment and hydrolysis of fiber-rich agricultural biomass, compounds such as salts, furfural, hydroxymethyl furfural (HMF), acetic, ferulic, glucuronic, rho-coumaric acids, and phenolic compounds are produced. Clostridium beijerinckii BA101 can utilize the individual sugars present in lignocellulosic [e.g., corn fiber, distillers dry grain solubles (DDGS), etc] hydrolysates such as ...
متن کاملAcetone-Butanol-Ethanol (ABE) production in fermentation of enzymatically hydrolyzed cassava flour by Clostridium beijerinckii BA101 and solvent separation.
Cassava constitutes an abundant substrate in tropical regions. The production of butanol in ABE fermentation by Clostridium beijerinckii BA101 using cassava flour (CF) was scaled-up to bioreactor level (5 L). Optimized fermentation conditions were applied; that is, 40℃, 60 g/l CF, and enzymatic pretreatment of the substrate. The batch fermentation profile presented an acidogenic phase for the f...
متن کاملTranscriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis.
Clostridium beijerinckii is an anaerobic bacterium used for the fermentative production of acetone and butanol. The recent availability of genomic sequence information for C. beijerinckii NCIMB 8052 has allowed for an examination of gene expression during the shift from acidogenesis to solventogenesis over the time course of a batch fermentation using a ca. 500-gene set DNA microarray. The micr...
متن کاملButanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber.
Fermentation of sulfuric acid treated corn fiber hydrolysate (SACFH) inhibited cell growth and butanol production (1.7+/-0.2g/L acetone butanol ethanol or ABE) by Clostridium beijerinckii BA101. Treatment of SACFH with XAD-4 resin removed some of the inhibitors resulting in the production of 9.3+/-0.5 g/L ABE and a yield of 0.39+/-0.015. Fermentation of enzyme treated corn fiber hydrolysate (ET...
متن کاملEvidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101.
The effects of substrate analogs and energy inhibitors on glucose uptake and phosphorylation by Clostridium beijerinckii provide evidence for the operation of two uptake systems: a previously characterized phosphoenolpyruvate-dependent phosphotransferase system (PTS) and a non-PTS system probably energized by the transmembrane proton gradient. In both wild-type C. beijerinckii NCIMB 8052 and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biotechnology
دوره 115 2 شماره
صفحات -
تاریخ انتشار 2005